Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FASEB J ; 36(2): e22133, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35032416

RESUMEN

Shift-workers show an increased incidence of type 2 diabetes mellitus (T2DM). A possible mechanism is the disruption of the circadian timing of glucose homeostasis. Skeletal muscle mitochondrial function is modulated by the molecular clock. We used time-restricted feeding (TRF) during the inactive phase to investigate how mistimed feeding affects muscle mitochondrial metabolism. Rats on an ad libitum (AL) diet were compared to those that could eat only during the light (inactive) or dark (active) phase. Mitochondrial respiration, metabolic gene expressions, and metabolite concentrations were determined in the soleus muscle. Rats on AL feeding or dark-fed TRF showed a clear daily rhythm in muscle mitochondrial respiration. This rhythm in mitochondrial oxidative phosphorylation capacity was abolished in light-fed TRF animals and overall 24h respiration was lower. The expression of several genes involved in mitochondrial biogenesis and the fission/fusion machinery was altered in light-fed animals. Metabolomics analysis indicated that light-fed animals had lost rhythmic levels of α-ketoglutarate and citric acid. Contrastingly, lipidomics showed that light-fed animals abundantly gained rhythmicity in levels of triglycerides. Furthermore, while the RER shifted entirely with the food intake in the light-fed animals, many measured metabolic parameters (e.g., activity and mitochondrial respiration) did not strictly align with the shifted timing of food intake, resulting in a mismatch between expected metabolic supply/demand (as dictated by the circadian timing system and light/dark-cycle) and the actual metabolic supply/demand (as dictated by the timing of food intake). These data suggest that shift-work impairs mitochondrial metabolism and causes metabolic inflexibility, which can predispose to T2DM.


Asunto(s)
Respiración de la Célula/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Ayuno/fisiología , Mitocondrias/fisiología , Músculo Esquelético/fisiología , Animales , Diabetes Mellitus Tipo 2/fisiopatología , Dieta/métodos , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Expresión Génica/fisiología , Masculino , Biogénesis de Organelos , Fosforilación Oxidativa , Fotoperiodo , Ratas , Ratas Wistar
2.
Int J Cardiol Cardiovasc Risk Prev ; 11: 200118, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34918012

RESUMEN

BACKGROUND: Disruption in circadian rhythms is associated with cardiovascular disease and may play a role in socioeconomic differences in cardiovascular disease prevalence. However, it is unclear whether low SES is associated with a lower diurnal rhythm in autonomic activity markers. We investigated the association between SES and the amplitude of the daily fluctuation of heart rate. METHODS: We included data of 450 participants of a HELIUS sub-study in Amsterdam, the Netherlands. Participants wore an Actiheart monitor (CamNtech), a chest-worn monitor which measures heart rate every 15 s for several days. Cosinor analysis was performed on the time series of heart rate within each participant. We analyzed the association between the cosinor parameters (amplitude, midline and peak time of the diurnal HR rhythm) and SES indicators (education, occupational class and a proxy of income) in multivariate linear regression models, adjusting for age, sex and ethnicity. RESULTS: There was a clear diurnal rhythm in the average heart rates, with a peak between noon and 18:00 and a trough between 04:00 and 06:00. This rhythm was present for all categories of education, occupation and income proxy. The estimates for the cosinor parameters did not differ consistently and significantly between categories of education, occupation or income proxy. CONCLUSIONS: We did not find any consistent evidence to support our hypothesis of a diminished amplitude in the diurnal variation of heart rate in individuals with lower SES. Future studies should explore SES differences in the diurnal variation in markers of autonomic activity other than heart rate.

3.
Nutrients ; 13(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064929

RESUMEN

BACKGROUND: Chronic stress is often accompanied by alterations in the diurnal rhythm of hypothalamus-pituitary-adrenal activity. However, there are limited data on the diurnal rhythmicity of breast milk glucocorticoids (GCs) among women with psychological distress. We compared mothers who sought consultation at an expertise center for pregnant women with an increased risk of psychological distress with control mothers for GC diurnal rhythmicity in milk and saliva obtained at the same time. METHODS: We included 19 mothers who sought consultation at the psychiatry-obstetric-pediatric (POP) outpatient clinic and 44 control mothers. One month postpartum, mothers collected on average eight paired milk and saliva samples during a 24 h period. GC levels were measured using liquid chromatography-tandem mass spectrometry. GC rhythmicity parameters were determined with specialized software. RESULTS: For both milk and saliva, no group differences regarding GC rhythms were found. Milk cortisol area under the curve with respect to the ground was lower in the POP group than in the control group (p = 0.02). GC levels in human milk and saliva were highly correlated within each group (p < 0.001). CONCLUSION: Although there were no differences between groups in GC rhythmicity, the total amount of milk cortisol was lower in the POP group. Long-term follow-up is needed to address the impact of vertical transmission of breast milk GCs.


Asunto(s)
Ritmo Circadiano , Glucocorticoides/análisis , Leche Humana/química , Estrés Psicológico , Adulto , Femenino , Humanos , Hidrocortisona/análisis , Madres/psicología , Embarazo , Mujeres Embarazadas , Psicopatología , Saliva/química
4.
Obesity (Silver Spring) ; 28 Suppl 1: S68-S80, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32475077

RESUMEN

OBJECTIVE: Epidemiological studies show that shift workers are at increased risk for type 2 diabetes. As modern societies increasingly require shift work, it seems crucial to determine whether there are long-lasting health effects of rotational shifts. METHODS: This study examined the after-effects of 4 weeks of time-restricted feeding (TRF) during the light period (= light-fed) in rats, an animal model for shift work. This study also included a TRF-dark (= dark-fed) control group. The aligned and misaligned feeding times of light and dark feeding are associated with poor and good health outcomes, respectively. Several physiological measures were monitored continuously; blood, liver, brown adipose tissue, and soleus and gastrocnemius muscle were collected following 11 days of ad libitum (AL) feeding after ending the TRF. RESULTS: In the dark-fed animals, the day/night differences in food intake, activity, and respiratory exchange ratio were still enhanced at the end of the experiment. Light-fed animals displayed the smallest day/night differences for these measures, as well as for body temperature. In both the light- and dark-fed animals, rhythms in plasma glucose, nonesterified fatty acids, and gene expression had not fully recovered after 11 days of AL feeding. Importantly, the effects on gene expression were both tissue and gene dependent. CONCLUSIONS: Our data indicate that rotational shift workers may have an increased risk of long-lasting disturbed rhythms in several physiological measures after a period of shift work. Clearly, such disturbances may harm their health.


Asunto(s)
Metabolismo Energético/fisiología , Ayuno/fisiología , Expresión Génica/genética , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Wistar
5.
Acta Physiol (Oxf) ; 228(3): e13430, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31840389

RESUMEN

Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Resistencia a la Insulina , Animales , Diabetes Mellitus Tipo 2/patología , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/patología , Ácidos Grasos/metabolismo , Humanos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología
6.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31650172

RESUMEN

CONTEXT: The hypothalamus-pituitary-adrenal (HPA) axis displays a diurnal rhythm. However, little is known about its development in early life. OBJECTIVE: To describe HPA-axis activity and study possible influencing factors in 1-month-old infants. DESIGN: Observational. SETTING: Amsterdam University Medical Center, location VU University Medical Center (VUMC), and Onze Lieve Vrouwe Gasthuis (OLVG), Amsterdam. PARTICIPANTS: Fifty-five mother-infant pairs. INTERVENTIONS: Collection of breast milk and infants' saliva 1 month postpartum for analysis of glucocorticoids (GCs; ie, cortisol and cortisone) using liquid chromatography- tandem mass spectrometry. MAIN OUTCOME MEASURE: GC rhythm in infants' saliva and associations with vulnerability for maternal psychological distress (increased Hospital Anxiety and Depression Scale [HADS] score) or consultation at the Psychiatric Obstetric Pediatric (POP clinic), season at sampling, sex, and breast milk GC rhythmicity analyzed with SigmaPlot 14.0 software (Systat Software, San Jose, CA, USA) and regression analyses. RESULTS: A significant biphasic GC rhythm was detected in infants, with mean peaks [standard error of the mean, SEM] at 6:53 am [1:01] and 18:36 pm [1:49] for cortisol, and at 8:50 am [1:11] and 19:57 pm [1:13] for cortisone. HADS score, POP consultation, season at sampling, and sex were not associated with the infants' GC rhythm. Breast milk cortisol maximum was positively associated with infants' cortisol area-under-the-curve (AUC) increase and maximum. Higher breast milk cortisone AUC increase, AUC ground, and maximum were associated with an earlier maximum in infants. Breast milk and infant GC concentrations were associated between 6:00 am and 9:00 am. CONCLUSIONS: A biphasic GC rhythm, peaking in the morning and evening, was seen in 1-month-old infants at a group level. Breast milk GC parameters might be associated with the infants' GC rhythm, possibly caused by a signaling effect of breast milk GCs, or as an associative effect of increased mother-infant synchrony. These results contribute to an increased understanding of early life HPA-axis development.


Asunto(s)
Ritmo Circadiano , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Leche Humana/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Saliva/metabolismo , Femenino , Estudios de Seguimiento , Glucocorticoides/análisis , Humanos , Sistema Hipotálamo-Hipofisario/crecimiento & desarrollo , Lactante , Recién Nacido , Masculino , Madres/psicología , Sistema Hipófiso-Suprarrenal/crecimiento & desarrollo , Embarazo , Pronóstico , Estrés Psicológico
7.
Artículo en Inglés | MEDLINE | ID: mdl-31496992

RESUMEN

Epidemiological studies indicate that shift-workers have an increased risk of type 2 diabetes mellitus (T2DM). Glucose tolerance and insulin sensitivity both are dependent on the circadian timing system (i.e., the time-of-day) and fasting duration, in rodents as well as humans. Therefore, question is whether manipulation of the circadian timing system, for example by changing the timing of feeding and fasting, is a potential preventive treatment for T2DM. Time-restricted feeding (TRF) is well-known to have profound effects on various metabolic measures, including glucose metabolism. However, experiments that directly measure the effects of TRF on glucose tolerance and/or insulin sensitivity at different time points throughout the 24 h cycle are lacking. Here we show, in rats, that TRF in line with the circadian timing system (i.e., feeding during the active phase) improves glucose tolerance during intravenous glucose tolerance tests (ivGTT) in the active phase, as lower insulin levels were observed with similar levels of glucose clearance. However, this was not the case during the inactive phase in which more insulin was released but only a slightly faster glucose clearance was observed. Contrasting, TRF out of sync with the circadian timing system (i.e., feeding during the inactive phase) worsened glucose tolerance, although only marginally, likely because of adaptation to the 4 week TRF regimen. Our results show that TRF can improve glucose metabolism, but strict adherence to the time-restricted feeding period is necessary, as outside the regular eating hours glucose tolerance is worsened.

8.
Artículo en Inglés | MEDLINE | ID: mdl-31316470

RESUMEN

Background: Disturbance of immunometabolic signaling is a key process involved in the progression of obesity. Microglia-the resident immune cells in the brain, initiate local immune responses. It is known that hypercaloric diets lead to microglial activation. Previously, we observed that hypothalamic microglial cells from mice fed high-fat diet (HFD) lose their day/night rhythm and are constantly activated. However, little is known about daily rhythmicity in microglial circadian, immune and metabolic functions, either in lean or obese conditions. Therefore, we hypothesized that HFD disturbs microglial immunometabolism in a day/night-dependent manner. Methods: Obesity was induced in Wistar rats by feeding them HFD ad libitum for the duration of 8 weeks. Microglia were isolated from HFD- and chow-fed control animals at six time points during 24 h [every 4 h starting 2 h after lights on, i.e., Zeitgeber Time 2 (ZT2)]. Gene expression was evaluated using quantitative RT-PCR. JTK_Cycle software was used to estimate daily rhythmicity. Statistical analysis was performed with two-way ANOVA test. Results: Consumption of the obesogenic diet resulted in a 40 g significantly higher body weight gain in week 8, compared to chow diet (p < 0.0001), associated with increased adiposity. We observed significant rhythmicity of circadian clock genes in microglia under chow conditions, which was partially lost in diet-induced obesity (DIO). Microglial immune gene expression also showed time-of-day differences, which were disrupted in HFD-fed animals. Microglia responded to the obesogenic conditions by a shift of substrate utilization with decreased glutamate and glucose metabolism in the active period of the animals, and an overall increase of lipid metabolism, as indicated by gene expression evaluation. Additionally, data on mitochondria bioenergetics and dynamics suggested an increased energy production in microglia during the inactive period on HFD. Finally, evaluation of monocyte functional gene expression showed small or absent effect of HFD on peripheral myeloid cells, suggesting a cell-specific microglial inflammatory response in DIO. Conclusions: An obesogenic diet affects microglial immunometabolism in a time-of-day dependent manner. Given the central role of the brain in energy metabolism, a better knowledge of daily rhythms in microglial immunometabolism could lead to a better understanding of the pathogenesis of obesity.

9.
Diabetologia ; 62(11): 2088-2093, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31327049

RESUMEN

AIMS/HYPOTHESIS: The central pacemaker of the mammalian biological timing system is located within the suprachiasmatic nucleus (SCN) in the anterior hypothalamus. Together with the peripheral clocks, this central brain clock ensures a timely, up-to-date and proper behaviour for an individual throughout the day-night cycle. A mismatch between the central and peripheral clocks results in a disturbance of daily rhythms in physiology and behaviour. It is known that the number of rhythmically expressed genes is reduced in peripheral tissue of individuals with type 2 diabetes mellitus. However, it is not known whether the central SCN clock is also affected in the pathogenesis of type 2 diabetes. In the current study, we compared the profiles of the SCN neurons and glial cells between type 2 diabetic and control individuals. METHODS: We collected post-mortem hypothalamic tissues from 28 type 2 diabetic individuals and 12 non-diabetic control individuals. We performed immunohistochemical analysis for three SCN neuropeptides, arginine vasopressin (AVP), vasoactive intestinal polypeptide (VIP) and neurotensin (NT), and for two proteins expressed in glial cells, ionised calcium-binding adapter molecule 1 (IBA1, a marker of microglia) and glial fibrillary acidic protein (GFAP, a marker of astroglial cells). RESULTS: The numbers of AVP immunoreactive (AVP-ir) and VIP-ir neurons and GFAP-ir astroglial cells in the SCN of type 2 diabetic individuals were significantly decreased compared with the numbers in the SCN of the control individuals. In addition, the relative intensity of AVP immunoreactivity was reduced in the individuals with type 2 diabetes. The number of NT-ir neurons and IBA1-ir microglial cells in the SCN was similar in the two groups. CONCLUSIONS/INTERPRETATION: Our data show that type 2 diabetes differentially affects the numbers of AVP- and VIP-expressing neurons and GFAP-ir astroglial cells in the SCN, each of which could affect the daily rhythmicity of the SCN biological clock machinery. Therefore, for effectively treating type 2 diabetes, lifestyle changes and/or medication to normalise central biological clock functioning might be helpful.


Asunto(s)
Arginina Vasopresina/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Neuroglía/metabolismo , Neuronas/metabolismo , Núcleo Supraquiasmático/citología , Ritmo Circadiano , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Estilo de Vida , Microglía/citología , Microglía/metabolismo , Neuropéptidos/metabolismo , Neurofisinas , Precursores de Proteínas , Péptido Intestinal Vasoactivo/metabolismo , Vasopresinas
10.
Int J Mol Sci ; 19(10)2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30326619

RESUMEN

Restricted feeding is well known to affect expression profiles of both clock and metabolic genes. However, it is unknown whether these changes in metabolic gene expression result from changes in the molecular clock or in feeding behavior. Here we eliminated the daily rhythm in feeding behavior by providing 6 meals evenly distributed over the light/dark-cycle. Animals on this 6-meals-a-day feeding schedule retained the normal day/night difference in physiological parameters including body temperature and locomotor activity. The daily rhythm in respiratory exchange ratio (RER), however, was significantly phase-shifted through increased utilization of carbohydrates during the light phase and increased lipid oxidation during the dark phase. This 6-meals-a-day feeding schedule did not have a major impact on the clock gene expression rhythms in the master clock, but did have mild effects on peripheral clocks. In contrast, genes involved in glucose and lipid metabolism showed differential expression. In conclusion, eliminating the daily rhythm in feeding behavior in rats does not affect the master clock and only mildly affects peripheral clocks, but disturbs metabolic rhythms in liver, skeletal muscle and brown adipose tissue in a tissue-dependent manner. Thereby, a clear daily rhythm in feeding behavior strongly regulates timing of peripheral metabolism, separately from circadian clocks.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Relojes Circadianos/genética , Metabolismo Energético/genética , Conducta Alimentaria , Hígado/metabolismo , Músculo Esquelético/metabolismo , Análisis de Varianza , Animales , Temperatura Corporal , Peso Corporal , Ingestión de Energía , Expresión Génica , Locomoción , Ratas
11.
Artículo en Inglés | MEDLINE | ID: mdl-29755411

RESUMEN

BACKGROUND: Daily cyclic changes in environmental conditions are key signals for anticipatory and adaptive adjustments of most living species, including mammals. Lower ambient temperature stimulates the thermogenic activity of brown adipose tissue (BAT) and skeletal muscle. Given that the molecular components of the endogenous biological clock interact with thermal and metabolic mechanisms directly involved in the defense of body temperature, the present study evaluated the differential homeostatic responses to a cold stimulus at distinct time-windows of the light/dark-cycle. METHODS: Male Wistar rats were subjected to a single episode of 3 h cold ambient temperature (4°C) at one of 6 time-points starting at Zeitgeber Times 3, 7, 11, 15, 19, and 23. Metabolic rate, core body temperature, locomotor activity (LA), feeding, and drinking behaviors were recorded during control and cold conditions at each time-point. Immediately after the stimulus, rats were euthanized and both the soleus and BAT were collected for real-time PCR. RESULTS: During the light phase (i.e., inactive phase), cold exposure resulted in a slight hyperthermia (p < 0.001). Light phase cold exposure also increased metabolic rate and LA (p < 0.001). In addition, the prevalence of fat oxidative metabolism was attenuated during the inactive phase (p < 0.001). These metabolic changes were accompanied by time-of-day and tissue-specific changes in core clock gene expression, such as DBP (p < 0.0001) and REV-ERBα (p < 0.01) in the BAT and CLOCK (p < 0.05), PER2 (p < 0.05), CRY1 (p < 0.05), CRY2 (p < 0.01), and REV-ERBα (p < 0.05) in the soleus skeletal muscle. Moreover, genes involved in substrate oxidation and thermogenesis were affected in a time-of-day and tissue-specific manner by cold exposure. CONCLUSION: The time-of-day modulation of substrate mobilization and oxidation during cold exposure provides a clear example of the circadian modulation of physiological and metabolic responses. Interestingly, after cold exposure, time-of-day mostly affected circadian clock gene expression in the soleus muscle, despite comparable changes in LA over the light-dark-cycle. The current findings add further evidence for tissue-specific actions of the internal clock in different peripheral organs such as skeletal muscle and BAT.

12.
J Mol Endocrinol ; 60(3): R115-R130, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29378772

RESUMEN

Many physiological processes are regulated with a 24-h periodicity to anticipate the environmental changes of daytime to nighttime and vice versa. These 24-h regulations, commonly termed circadian rhythms, among others control the sleep-wake cycle, locomotor activity and preparation for food availability during the active phase (daytime for humans and nighttime for nocturnal animals). Disturbing circadian rhythms at the organ or whole-body level by social jetlag or shift work, increases the risk to develop chronic metabolic diseases such as type 2 diabetes mellitus. The molecular basis of this risk is a topic of increasing interest. Mitochondria are essential organelles that produce the majority of energy in eukaryotes by converting lipids and carbohydrates into ATP through oxidative phosphorylation. To adapt to the ever-changing environment, mitochondria are highly dynamic in form and function and a loss of this flexibility is linked to metabolic diseases. Interestingly, recent studies have indicated that changes in mitochondrial morphology (i.e., fusion and fission) as well as generation of new mitochondria are dependent on a viable circadian clock. In addition, fission and fusion processes display diurnal changes that are aligned to the light/darkness cycle. Besides morphological changes, mitochondrial respiration also displays diurnal changes. Disturbing the molecular clock in animal models leads to abrogated mitochondrial rhythmicity and altered respiration. Moreover, mitochondrial-dependent production of reactive oxygen species, which plays a role in cellular signaling, has also been linked to the circadian clock. In this review, we will summarize recent advances in the study of circadian rhythms of mitochondria and how this is linked to the molecular circadian clock.


Asunto(s)
Ritmo Circadiano , Mitocondrias/metabolismo , Animales , Respiración de la Célula , Humanos , Mitofagia , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-31236504

RESUMEN

The effects of feeding behavior and diet composition, as well as their possible interactions, on daily (clock) gene expression rhythms have mainly been studied in the liver, and to a lesser degree in white adipose tissue (WAT), but hardly in other metabolic tissues such as skeletal muscle (SM) and brown adipose tissues (BAT). We therefore subjected male Wistar rats to a regular chow or free choice high-fat-high sugar (fcHFHS) diet in combination with time restricted feeding (TRF) to either the light or dark phase. In SM, all tested clock genes lost their rhythmic expression in the chow light fed group. In the fcHFHS light fed group rhythmic expression for some, but not all, clock genes was maintained, but shifted by several hours. In BAT the daily rhythmicity of clock genes was maintained for the light fed groups, but expression patterns were shifted as compared with ad libitum and dark fed groups, whilst the fcHFHS diet made the rhythmicity of clock genes become more pronounced. Most of the metabolic genes in BAT tissue tested did not show any rhythmic expression in either the chow or fcHFHS groups. In SM Pdk4 and Ucp3 were phase-shifted, but remained rhythmically expressed in the chow light fed groups. Rhythmic expression was lost for Ucp3 whilst on the fcHFHS diet during the light phase. In summary, both feeding at the wrong time of day and diet composition disturb the peripheral clocks in SM and BAT, but to different degrees and thereby result in a further desynchronization between metabolically active tissues such as SM, BAT, WAT and liver.

14.
J Biol Rhythms ; 32(5): 380-393, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29098954

RESUMEN

Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding "big data" that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.


Asunto(s)
Ritmo Circadiano/genética , Genoma , Genómica , Estadística como Asunto/métodos , Bioestadística , Biología Computacional/métodos , Genómica/estadística & datos numéricos , Humanos , Metabolómica , Proteómica , Programas Informáticos , Biología de Sistemas
15.
Chronobiol Int ; 34(10): 1339-1353, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29028359

RESUMEN

Desynchronization between the master clock in the brain, which is entrained by (day) light, and peripheral organ clocks, which are mainly entrained by food intake, may have negative effects on energy metabolism. Bile acid metabolism follows a clear day/night rhythm. We investigated whether in rats on a normal chow diet the daily rhythm of plasma bile acids and hepatic expression of bile acid metabolic genes is controlled by the light/dark cycle or the feeding/fasting rhythm. In addition, we investigated the effects of high caloric diets and time-restricted feeding on daily rhythms of plasma bile acids and hepatic genes involved in bile acid synthesis. In experiment 1 male Wistar rats were fed according to three different feeding paradigms: food was available ad libitum for 24 h (ad lib) or time-restricted for 10 h during the dark period (dark fed) or 10 h during the light period (light fed). To allow further metabolic phenotyping, we manipulated dietary macronutrient intake by providing rats with a chow diet, a free choice high-fat-high-sugar diet or a free choice high-fat (HF) diet. In experiment 2 rats were fed a normal chow diet, but food was either available in a 6-meals-a-day (6M) scheme or ad lib. During both experiments, we measured plasma bile acid levels and hepatic mRNA expression of genes involved in bile acid metabolism at eight different time points during 24 h. Time-restricted feeding enhanced the daily rhythm in plasma bile acid concentrations. Plasma bile acid concentrations are highest during fasting and dropped during the period of food intake with all diets. An HF-containing diet changed bile acid pool composition, but not the daily rhythmicity of plasma bile acid levels. Daily rhythms of hepatic Cyp7a1 and Cyp8b1 mRNA expression followed the hepatic molecular clock, whereas for Shp expression food intake was leading. Combining an HF diet with feeding in the light/inactive period annulled CYp7a1 and Cyp8b1 gene expression rhythms, whilst keeping that of Shp intact. In conclusion, plasma bile acids and key genes in bile acid biosynthesis are entrained by food intake as well as the hepatic molecular clock. Eating during the inactivity period induced changes in the plasma bile acid pool composition similar to those induced by HF feeding.


Asunto(s)
Ácidos y Sales Biliares/sangre , Colesterol 7-alfa-Hidroxilasa/genética , Ritmo Circadiano/fisiología , Dieta , Conducta Alimentaria , Receptores Citoplasmáticos y Nucleares/genética , Esteroide 12-alfa-Hidroxilasa/genética , Animales , Ácidos y Sales Biliares/biosíntesis , Ácidos y Sales Biliares/genética , Ritmo Circadiano/genética , Metabolismo Energético , Expresión Génica , Fotoperiodo , Ratas , Ratas Wistar
16.
Biochim Biophys Acta ; 1862(3): 452-60, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26493443

RESUMEN

Impairment of the protective properties of the blood-brain barrier (BBB) is a key event during numerous neurological diseases, including multiple sclerosis (MS). Under these pathological conditions, the specialized brain endothelial cells (BECs) lose their protective function leading to neuroinflammation and neurodegeneration. To date, underlying mechanisms for this loss of function remain unclear. Endothelial to mesenchymal transition (EndoMT) is a dynamic process by which endothelial cells (ECs) dedifferentiate into mesenchymal cells and as a result lose their specific phenotype and function. As yet, little is known about the involvement of this process in the impaired function of the BECs under pathological conditions such as MS. Interestingly, several signaling pathways that can induce EndoMT are also involved in different central nervous system (CNS) pathologies associated with BBB dysfunction. In this review, we first discuss the structure and function of the BBB highlighting the changes that occur during MS. Next, we will summarize recent findings on the pathways underlying EndoMT, and finally, we will discuss the potential role of EndoMT during BBB dysfunction in neurological disorders. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.


Asunto(s)
Barrera Hematoencefálica/patología , Células Endoteliales/patología , Transición Epitelial-Mesenquimal , Inflamación/patología , Esclerosis Múltiple/patología , Animales , Barrera Hematoencefálica/inmunología , Células Endoteliales/inmunología , Humanos , Inflamación/inmunología , Esclerosis Múltiple/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...